

There are four main commercial terahertz (THz) technologies suitable for industrial use.

Time-domain spectroscopy

Time-domain spectroscopy (TDS) uses a pulsed THz signal activated by a laser.

The transmitter and receiver are fibre-coupled.

Achievable specifications (under optimal conditions):

- Bandwidth: 0.1-6 THz
- Frequency resolution:
 - 0.5 GHz using delay
 - 1.5 GHz using ECOPS
 - > 100 MHz using ASOPS
- Spatial resolution: 250-1000 μm, depending on frequency
- Depth resolution: 5-10 μm

Frequency-modulated continuous wave

Frequency-modulated continuous wave (FMCW) uses a THz signal activated by a laser.

The transmitter and receiver are fibre-coupled.

Achievable specifications (under optimal conditions):

- Bandwidth: 0.1-4 THz
- Frequency resolution: 1 GHz
- Spatial resolution: 500-1000 μm, depending on frequency
- Depth resolution: 20 μm

Electronic FMCW operates at a fixed frequency up to 0.6 THz.

Continuous wave photonic-based frequency domain

Continuous wave photonic-based frequency domain (CW) uses a THz signal activated by a laser.

The transmitter and receiver are fibre-coupled.

Achievable specifications (under optimal conditions):

- Bandwidth: 0.05-3.2 THz
- Frequency resolution: 10 MHz
- Spatial resolution: 500-1000 μm, depending on frequency
- Depth resolution: N/A

Vector network analysis

Vector network analysis (VNA) uses a THz signal generated electronically.

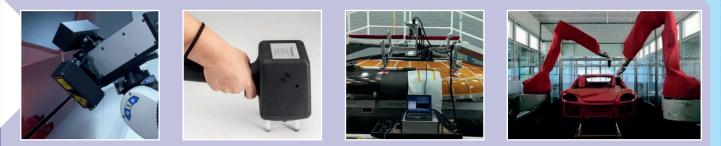
The transmitter and receiver are waveguide-coupled in a rigid configuration.

Achievable specifications (under optimal conditions):

- Bandwidth: 0.01-1.2 THz
 - > Note: Several sets of frequency extenders and waveguides are required to access the bandwidth.
 - Measurements are performed in waveguide-defined sub-octave bands.
- Frequency resolution: 1 MHz
- Spatial resolution: 2-5 mm, depending on frequency
- Depth resolution: N/A

-

Application	THz technology
 Coatings monitoring and inspection Thickness of every layer in mono- and multilayer coatings Coating thickness uniformity Coating porosity Layer adhesion/delamination 	TDS FMCW
Conductivity and other electrical properties of thin films	TDS FMCW CW VNA
Corrosion/damage under coatings	TDS FMCW CW
 Material inspection Complex permittivity Substance identification Porosity Moisture content Presence of contaminants 	TDS FMCW CW VNA
 Imaging internal structures Layer thickness/uniformity Defects Voids Cracks and faults Debonding Delamination 	TDS FMCW
Trace gas sensing	CW VNA
Moisture content	TDS FMCW CW VNA



20,36 ps

Prepared by the Terahertz User Group of the British Institute of Non-Destructive Testing Midsummer House, Riverside Way, Bedford Road, Northampton NN1 5NX, UK Tel: +44 (0)1604 438300 | Email: info@bindt.org | Web: www.bindt.org

..engineering safety, integrity & reliability